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A method of numerical integration of systems of differential equations is proposed that can be used for 

equations that describe processes occurring in every field of physics, namely, fluid mechanics, nuclear 

physics, solid-state physics, etc. The A P P R O X  program package, which implements the method of 

approximating series, makes it possible to write programs for computations in no more than 2-3 hours and 

reduces the calculation time by 1-2 orders in comparison with finite-difference methods. 

Introduction. As investigations of the distribution of the processor time among problems solved on 

computers demonstrate, more than half of the time is spent on problems in which systems of differential equations 

are integrated. Most of all, this concerns problems of aerohydrodynamics and heat and mass transfer. 

Despite the recent sharp increase in computer perfomance, overhead is a threshold parameter for the 

majority of problems that are of interest to researchers. In addition, a great number of problems have not yet been 

solved or are solved in an abbreviated physical formulation because of the prohibitively large overhead of processor 

time. Therefore, the problem of creating numerical methods that reduce the time for integrating systems of 
differential equations remains urgent. 

I. Description of the Proposed Method. The sense of the method is that all the sought functions of 

differential equations are approximated by series (that is, are expanded in independent variables: space, time, and 

others). We then seek the coefficients of the expansion of the unknown functions. After that, we substitute the 

series into differential equations that are written for interior points of the calculation domain in a quantity sufficient 

to determine all the coefficients of the series (the number of points is to be equal in the total number of coefficients 
in the approximations of the sought functions). The location of the points within the domain is arbitrary and 

depends on the accuracy of the description of the physical process. The system of equations obtained is a system 

of nonlinear equations in the expansion coefficients in the general case and is solved by a method of solution for 

systems of nonlinear equations. After obtaining the coefficients of the series, the functions approximated by them 
can be found at the requisite points of the calculation domain. 

By dividing the calculation domain into connected parts, describing differently the physical processes in 

parts of the calculation domain, changing variables, or transforming nonlinear terms, etc., it is possible to achieve 

a significant reduction in the number of sought coefficients and to reduce the calculation time. 

Although the idea of approximate series of unknown functions lacks novelty (the following methods of 

integration of linear differential equations are well-known: integration by expanding the solution in a series, Krylov 

and Bogolyubov's approximate method [1 ], methods that use F-series to find a solution of Poisson's equation [21 ]), 

the method proposed has not been used for numerical integration of systems of differential equations and nonlinear 

differential equations. An explanation might be that creating a program for calculation according to the method 
proposed is at first sight a tedious activity since already when the number of coefficients is of the order of 20-30, 

writing down approximate series, differentiating them, substituting them into a system of differential equations, 

and writing the program itself will require at least as much time as creating a program using finite-difference 
methods. This seems especially true for the number of coefficients approaching 1000. However, this impression is 
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false, since it is possible to develop mathematical expressions on modern computers. This is how the APPROX 

program package was made; it begins with the statement of the physical problem and the selection of approximating 

series and boundary and initial conditions and ends in a program in the high-level language FORTRAN or Ada 

with minimum expenses of the time and effort of an investigator. 

2. Statement of the Problem. In the present work the method proposed is demonstrated for the case of a 

stationary flow of a viscous incompressible liquid in a two-dimensional channel of constant width. 

The initial system 

u O U  OU 10P / \ [ o 2 v o Z v l  
ox + v o-Y = - ~ o~ + v I ~ + --~ z , (1) 
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OU + OV 
o--7 ~ = 0 (3) 

contains momentum equations (1), (2) and equation of continuity (3). 

Eliminating P from Eqs. (1) and (2), we obtain a simpler system of differential equations. For this purpose 

we differentiate Eq. (1) with respect to y and (2) with respect to x and substract (2) from (1). Removing from the 

equation obtained the terms that satisfy the equation of continuity and the highest derivatives of it, we have 

Ox 2 + Oy2 + 
(4) 

03V 03U 03U 
+ v  2 - -  = 0 .  

Ox 3 Oy 3 Oy20x 

Equations (4) and (3) form a new system for determining the functions U and V. The system of equations is 

elliptical, so to integrate it it is necessary to state outlet conditions for U and V. If we state outlet conditions in the 

form of boundary conditions of the second kind (Neumann boundary conditions), a system is obtained that consists 

of four differential equations (equation (4) is nonlinear). 

After finding the velocities it is possible to obtain the pressure P from Poisson's equation 

_ _  _ _  OU - -~ -y  =0 02p + oZP + 2 -~x + OU OV (5) 
Ox 2 Oy2 Ox " 

Poisson's equation is written for the interior points and the boundaries of the calculation domain. Here, a system 

of linear equations in the coefficients of the expansion for P, which is solved more quickly than the system of 

nonlinear equations, is obtained. 
3. Implementation of the Method. Several approximations for U and  V, which differ in the degree of the 

polynomial in the x direction (ml = 2, rnz = 3, m3 = 5) were considered: 

U =  ~ sin(tory/l) ~ ZkX j + A  n , V= ~] sin(tory/l) Dk x i + B n  , (6) 
n=l ]=1 n=l n=l 
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Fig. 1. Change in the velocity profile U along the channel length: 1) x -- 0; 2) 

6; 3) 12; 4) 18 (a) and change in the velocity profile V along the channel 

length: 1) x = 0; 2) 2; 3) 4; 4) 6; 5) 8; 6) 10; 7) 12; 8) 14; 9) 16; 10) 18 (b) 

U, V, dimensionless. 

where k = (n -1 )  .mi+j; Z k and D k are the coefficients of the expansion for U and V; A n and Bn are the coefficients 

of the initial expansion for U and V (at the channel entrance). The number of unknown coefficients of the system 

is Nml --- 20, Nm2 = 30, Nm3 = 50. 

For the given problem it is possible to improve the accuracy of the initial expansion of the sought functions 

U and V. Then, however, the accuracy of the description of the functions at the entrance boundary will not conform 

with the accuracy of the description of the functions within the calculation domain. 

As is seen from (6) the condition of "adherence" to walls is satisfied for the functions U and V, i.e., when 

y = 0 and y = l, U = 0 and V = 0. The channel length x is reckoned in channel widths l. 

Satisfaction of the boundary conditions by the approximating series is unnecessary, but is desirable, since 

this eliminates the direct specification of boundary conditions and reduces the number of coefficients necessary for 

the description of the process. 

For the solution of systems of nonlinear equations Newton's method [3], the gradient descent method, 

and the method of minimization of maximum discrepancies were used. The best results concerning rate of 

convergence towards the solution of the system of nonlinear equations were produced by Newton's method, which 

was also slightly modified for u~e in the calculation. According to Newton's method z n+l is determined by iterations 

from the equation 

n+ 1 zn W- 1 (zn) f (zn) (7) 

where n is the step number, z n+l is the column-vector of sought coefficients of the expansion; W "1 (z n) is inverse 

Jacobian of the functions f ( z  n) which are obtained by substitution of the approximating series into the differential 

equations of the system and are written for the interior points of the domain. The modification of Newton's method 

consists in that z n+l is determined from the solution of the system of linear equations, written in the following form: 

W (z n) z n+l = b n ,  (8) 

where b n = w ( z n ) z n - f ( z  n) is the column of right-hand sides. By going from inversion of the Jacobian to the solution 

of the system of linear equations the calculation time reduced threefold and the main storage capacity of a computer 

is reduced twofold. 

4. Analysis of the Results of a Numerical Calculation. As follows from the calculations performed, the 

convergence of the solution, for example, for maximum discrepancy is rapid and requires 3-6 iterations for 

nonseparated flows in accordance with the required accuracy for the coefficients of the series. The number of 

iterations is increased to 10-15 for separated flows and flows with a complex configuration or large Reynolds 
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numbers. The calculation time for one iteration is 0.9 sec for Nml , 1.8 sec for Nm2 , and 6.3 sec for Nm3 on an IBM 

PC/AT 286 12 MHz and this time can be reduced 1.5-2-fold. On average, obtaining the solution it required 5, 

10, 30 sec, respectively. The time for obtaining the sought functions with known coefficients of the series should 

be regarded as the overhead of time needed for integrating the system of differential equations. But this time is 

usually small (to calculate functions at 200 points, about 1 sec is required for Nrna). Calculations of similar flows 

on the same computer by means of finite-difference methods require 1-2 orders more time. 

For the case of nearly uniform entry of the flow into the channel at a Reynolds number of Re--  1000 the 

functions U and V shown in Fig. 1 were found with the approximation with Nrn3. Calculations were also performed 

at Reynolds numbers up to 108 and showed satisfactory results in the sense of convergence of the iterative process 

to the solution and physicality of the latter. 

As is seen from Fig. 1, the results for U and V conform quite satisfactorily with the theory, according to 

which a developed plane-parallel flow is formed at the outlet from the calculation section in the channel and the 

profile of the velocity U corresponds to a parabolic Poiseuille profile with a maximum of 1.5. It turned out that the 

approximation with Nra2 provides acceptable results. For example, the defect of consumption for Nm3 is 15% for 

20 widths and for Nm2 it is 1.7%. 

The outlet conditions were put in the form of boundary conditions of the first or second kind, for which 

practically identical results were obtained. A much greater effect on the solution was produced by the location of 

the points within the calculation domain and the initial approximation of the coefficients of the expansion for z ~ in 

(8). 

In this connection questions concerning global stability of the present method, its stability toward the initial 

approximation for the coefficients of the expansion and the initial and boundary conditions, convergence to the 

solution of the system of differential equations, and uniqueness and accuracy of the solution arise. 

These questions fall outside the framework of the present article; we may, however, assume that with 

properly specified boundary conditions, approximation of the sought functions by multiply differentiable series, 

and smoothness of the solution, problems would be avoided. 

5. Prediction of the Calculation Time. It is of interest to get to determine the time spent on one iteration 

step according to Newton's method which is used in the method of approximating series for different numbers of 

coefficients of the expansion. The number of coefficients of the expansion may characterize either the accuracy of 

the solution obtained or the complexity of the initial system of equations. It is convenient to express time in relative 

quantities, for example, tN/t30, where tN is the calculation time for N coefficients and t30 is the calculation time 

for a system with 30 coefficients of expansion. Let us represent the total calculation time by the polynomial 

tN/  t30 = AN 3 + BN 2 + CN.  (9) 

Calculations by the method of approximating series show that A = 2.454.10 -5, B = -1.298.10 -4, C = 0.01514. The 

results of calculating tN/t30 according to (9) are given in Fig. 2. It is considered here that the computations are 

performed on computers of equal speed. 

It is possible to find tN according to (9) or using Fig. 2: 

t N = Mt3o I0 l~ (tN/t30), 

where M is the relative computer perfomance compared to an IBM PC/AT 286 12 MHz. 

6. Estimation of the Potentialities of the Method. Proceeding from the above, we draw conclusions about 

the field of application of the method of approximating series and its accuracy and speed of computations, and we 

may compare these parameters with similar parameters for known and employed methods. 

As was stated before, the method of approximating series is not limited to just one field of physics, which 

makes it similar to finite difference methods. 

When estimating the accuracy and speed of computations we should distinguish between calculations for 

systems of linear and nonlinear differential equations by the approximating series method, since their solutions 
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Fig. 2. Dependence of the calculation time for the method of approximating 

series tN on the number of coefficients of the expansion of the sought 

functions N. 

TABLE 1. Rought Time of Calculation by the Approximating Series Method for Different Flows of Liquid for a Cray 
X-MP/48 Computer 

Type of flow N log tN/t30 T Cray-X-MP, sec 

Two-dimensional incompressible, viscous, 
non-turbulent, P is calculated separately 

Two-dimensional incompressible, viscous, 
non-turbulent, with calculation of P 

Two-dimensional compressible, viscous, non- 
turbulent 

Two-dimensional compressible, viscous, 
turbulent 

Two-dimensional compressible, viscous, 
turbulent, nonstationary 

Three-dimensional incompressible, viscous, 
non-turbulent, stationary, 300-400 

Three-dimensional compressible, viscous, 
non-turbulent, stationary, 350-450 

Three-dimensional compressible, viscous, 
turbulent, stationary 

Three-dimensional compressible, viscous, 
turbulent, nonstationary 

30-60 

47-75 

75-100 

100-130 

500 -700 

2.8-3.2 

3.0-3.3 

600-700 

103-2 �9 10 3 , 

4.4-5.3 

0-0.8 

0.4-1.0 

1.0-1.4 

1.4-1.7 

3.5-3.9 

1.5 

2.2 

3.7-3.9 

25-  200 

6.10 -3 

1.10 -2 

3.10 -2 

6.10 -2 

8 

take significantly different times (a system of linear differential equations is solved 5-10  times more quickly due 

to the need for just one step in Newton's method). 

It is possible to show that for systems of linear differential equations the calculation time for the method 

of approximating series at low accuracy is even less than for a theoretical solution represented in series for the 

Laplace, Helmholtz, diffusion, Schr~dinger, Poisson, and wave equations and similar ones, if such solution exists 

(it exists for a limited set of initial and boundary conditions and configurations of calculation domain). Achieving 

similar accuracy by other methods requires by one-two orders more overhead of the processor time of a computer. 

For systems of nonlinear differential equations the calculation lime for the method of approximating series 
for any degree of accuracy of the calculated values is also one-two orders smaller than the calculation time for 
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other numerical methods. Examples of different types of flows of liquid for aerodynamic problems are presented 

in the Table 1. The number N of coefficients of the expansion and a rough calculation time for a Cray X-MP/48 

supercomputer are given for the flows (it was considered that the Cray X-MP/48 perfomance is four orders higher 
than the IBM PC/AT 286 perfomance). 

To provide evidence we compare the time of calculation of three-dimensional nonstationary flow of a viscous 

turbulent compressible liquid by a finite-difference method and the method of approximating series on a Cray 

X-MP/48 computer. The average calculation time for finite-difference methods is 1000-5000 sec [4. 5]. The 

expected calculation time for the method of approximating series is 25-200 sec with the same accuracy of 

determining the calculated quantities. 

7. Description of the APPROX Program Package. To make the writting of programs using the method of 

approximating series easier, the APPROX program package is created and implemented on a computer of the IBM 

PC or VAX type. This package may easily be transferred to other types of computers. The APPROX program 

package makes it possible to write a program in the high-level language FORTRAN or Ada in 1-3 hours for a 

completely formalized problem (initial and boundary conditions are stated, the system of differential equation is 

written down, the approximation of all the unknown is selected, etc.). For example., every program with Nrnl, Nm2, 
Nm3 was done in less than 1 hour. The APPROX package allows one quickly and optimally to formulate boundary 

and initial conditions to select the system of differential equations and the approximating series for the unknown 

variables, etc.). In addition, the system allows one to output the results of calculations in a convenient form 

(multidimentional plots, sections, level lines, etc.) on a display screen or on paper (the graphs presented in the 

present work have been prepared by means of the system). 

Conclusions. Thus, we may recommend the method of approximating series for wide use in calculations. 

The method allows one to save time and money, as compared to calculations performed by presently used methods. 

In addition the shorter calculation time for this method allows one to solve problems that are solved only 

experimentally at present. 
You may receive information on the APPROX program package by telephone at the number (8-057) 40- 

08-30 (Kharkov). 

N O T A T I O N  

x, y, coordinate axes; U, velocity component in the x direction; V, velocity component in the y direction; 

P, pressure; p, density; n, viscosity; l, channel width, Re, Reynolds number; m~, m2, m3, degree of the 

approximating polynomial in the x direction; An, Bn, Zk, D k , coefficients of the expansion for U and V; Nml, Nm2, 
Nm3 , numbers of unknown coefficients of the expansion; z n, column vector of coefficients of the expansion; f(zn), 
functions; W(zn), Jacobian; b n, vector of right-hand sides. 

R E F E R E N C E S  

o 

2. 

3. 

4. 
5. 

G. Korn and T. Korn, Reference Book on Mathematics [Russian translation 1, Moscow (1970). 

R. W. Hockey, J. Association of Computing Machinery, 12, 95, (1965). 

B. P. Demidovich and T. A. Maron, Fundamentals of Computational Mathematics [in Russian ], Moscow (1970). 
t ! , 

P.- M. Hartwich and C.-H. Su, Aerokosm.Tekhmka, No. 7, 95-105, (1990). 

S. Jonnavitula, S. Tangam, F. Sisto, A~rokosm, T~khnika, No. 5, 59-69 (1991). 

220 


